Русский изменить

Ошибка: нет перевода

×

☵ Митохондриальная ДНК

Main page / Живомордность / ☵ Митохондриальная ДНК

Содержание

    DNA mitochondrialny genealogia

    Зачем митохондриям своя ДНК? Хотя почему бы симбионтам не иметь свою ДНК в себе, производя все необходимое на месте? Зачем тогда переносить часть митохондриальной ДНК в ядро клетки, создавая необходимость транспортировки продуктов генов в митохондрии? Почему митохондрии передаются только от одного из родителей? Каким образом митохондрии, полученные от матери, уживаются с геномом клетки, составленным из ДНК матери и отца? Чем больше люди узнают о митохондриях, тем больше вопросов возникает.

    2014052001

    Впрочем, это касается не только митохондрий: в любой области любой науки расширение сферы знаний приводит только к увеличению ее поверхности, соприкасающейся с неизвестным, вызывающим все новые вопросы, ответы на которые расширят ту самую сферу с тем же предсказуемым результатом.

    Итак, ДНК современных митохондрий распределена весьма странно: небольшая часть генов содержится непосредственно в митохондриях в кольцевой хромосоме (точнее, в нескольких копиях одной и той же хромосомы в каждой митохондрии), а большая часть чертежей для производства составных частей митохондрии хранится в ядре клетки. Поэтому копирование этих генов происходит одновременно с копированием генома всего организма, а производимые по ним продукты проходят долгий путь из цитоплазмы клетки внутрь митохондрий. Тем не менее это во многом удобно: митохондрия избавлена от необходимости копировать все эти гены при размножении, считывать их и строить протеины и другие составляющие, сосредоточившись на своей главной функции по производству энергии. Зачем же тогда в митохондриях все-таки находится небольшая ДНК, для обслуживания которой требуются все эти механизмы, избавившись от которых митохондрии могли бы еще больше ресурсов бросить на основную цель их существования?

    бактерия copy

    Сначала предположили, что оставшаяся в митохондриях ДНК является атавизмом, наследием поглощенной метаногеном про-митохондрии, имеющей полный бактериальный геном. В начале их симбиоза, несмотря на существование в ядре тех митохондриальных генов (м-генов), которые были необходимы для поддержания внутри метаногена комфортной для про-митохондрий среды (про это подробно написано в первой главе о митохондрии), те же самые гены хранились и в каждой из митохондрий. Про-митохондрия в начале своей жизни в качестве симбионта выглядела примерно так же, как современная бактерия на схеме слева от этого абзаца.

    И очень медленно из-за невостребованности эти гены исчезали из митохондриальной хромосомы в результате самых разных мутаций. А вот клеточное ядро накапливало все больше м-генов, попадавших в цитоплазму из разрушенных симбионтов-митохондрий и встраивавшихся в геном химеры-эукариота. Как только свежевстроившийся м-ген начинал считываться, клеточные механизмы производили необходимые митохондриям продукты, освобождая симбионтов от самостоятельного их создания. А значит, митохондриальный аналог перешедшего в ядро гена больше не поддерживался в рабочем состоянии естественным отбором и стирался мутациями так же, как все предыдущие. Поэтому логично было бы предположить, что скоро и те гены, которые все еще остались в митохондриях, перейдут в ядро, что приведет к большой энергетической выгоде для эукариот: ведь из каждой митохондрии можно будет убрать громоздкие механизмы копирования, считывания и исправления ДНК, а так же все необходимое для создания протеинов.

    миграция м-генов в ядро

    Придя к такому выводу, ученые подсчитали, за какой срок путем естественного дрейфа из митохондрии в ядро должны были перекочевать все гены. И оказалось, что этот срок уже давно прошел. В момент появления эукариотической клетки митохондрии имели обычный бактериальный геном из нескольких тысяч генов (ученые устанавливают, каким был этот геном, изучая перенесенные в ядро м-гены у разных организмов), а сейчас митохондрии всех видов эукариот потеряли от 95 до 99,9% своих генов. Больше сотни генов в митохондриях не осталось ни у кого, но и безгеновой митохондрии тоже ни у кого не появилось. Если бы ключевую роль в этом процессе играл случай, то хотя бы несколько видов уже прошли бы путь переноса генов в ядро до конца. Но этого не произошло, и изученные на данный момент митохондрии разных видов, теряющие свои гены независимо друг от друга, сохранили один и тот же их набор, что прямо указывает на необходимость присутствия именно этих генов именно в митохондриях.

    органеллы транскрипции и трансляции

    Более того, в других энергопроизводящих органеллах клеток, хлоропластах, тоже есть своя ДНК, и точно так же хлоропласты разных видов эволюционировали параллельно и независимо, оставшись каждый с одним и тем же набором генов.

    Значит, все те значительные неудобства по поддержанию собственного генома в каждой клеточной митохондрии (а в среднем в одной клетке содержится несколько сотен!) и громоздкого аппарата по его копированию-исправлению-транслированию  (основные, но не все! его части ты видишь на картинке слева) чем-то перевешиваются.

    И на данный момент существует непротиворечивая теория этого «чего-то»: возможность производить определенные детали митохондрии непосредственно внутри нее необходима для регулирования скорости дыхания и подстройки происходящих в митохондрии процессов под ежеминутно меняющиеся потребности всего организма.

    крен

    Представь, что в одной из сотен митохондрий клетки вдруг не хватает элементов дыхательной цепи (подробно про нее смотри в предыдущей главе), или в ней недостаточно АТФ-синтаз. Она оказывается либо перегруженной пищей и кислородом и не может их достаточно быстро перерабатывать, или ее межмембранное пространство распирает от протонов, которые некуда девать — полная катастрофа в общем. Конечно же все эти отклонения от идеальной жизненной ситуации запускают множественные сигналы, направленные на выравнивание крена тонущего корабля.

    Эти сигналы запускают производство именно тех деталей, которых не хватает митохондрии в данный момент, активируя считывание генов, по которым строятся протеины. Как только митохондрия будет иметь достаточно компонентов дыхательной цепи или АТФаз, «крен выровняется», сигналы о необходимости постройки новых деталей перестанут поступать, и гены опять будут выключены. Это один из удивительно элегантных в своей простоте необходимых механизмов саморегуляции клетки, малейшее его нарушение ведет к серьезной болезни или даже нежизнеспособности организма.

    дыхательная цепь

    Попробуем логически определить, где должны находиться необходимые для реакции на этот сигнал бедствия гены. Представь ситуацию, что эти гены находятся в ядре клетки, содержащей пару сотен митохондрий. В одной из митохондрий возник например недостаток NADH-дегидрогеназы: первого фермента из дыхательной цепи, чья роль состоит в отрыве двух электронов от молекулы NADH, передаче их следующему ферменту и прокачке 2-4 протонов через мембрану.

    На самом деле такие недостатки какого-либо фермента случаются довольно часто, ведь они периодически выходят из строя, количество потребляемой пищи постоянно меняется, потребности клетки в АТФ тоже прыгают вслед за прыжками или валяниями организма, эту клетку содержащего. Поэтому ситуация очень типичная. И вот митохондрия испускает сигнал: «нужно строить больше NADH-дегидрогеназы!», который выходит за ее пределы, проходит по цитоплазме до ядра, проникает в ядро и запускает считывание нужных генов. По клеточным меркам время прохождения этого сигнала весьма существенно, а ведь требуется еще и вытащить из ядра в цитоплазму построенную матричную РНК, создать по ней протеины, переслать их в митохондрию…

    И вот тут возникает проблема гораздо более существенная, чем трата лишнего времени: при создании специализированных митохондриальных протеинов они маркируются сигналом «доставить в митохондрию», но вот в какую? Неизвестно. Поэтому в каждую из пары сотен митохондрий начинают поступать протеины, которые им не нужны. Клетка тратит ресурсы на их производство и доставку, митохондрии заполнены лишними дыхательными цепями (что приводит к неэффективности дыхательных процессов), а та единственная митохондрия, которой эти протеины нужны, не получает их в достаточном количестве, ведь ей достается в лучшем случае сотая часть произведенного. Поэтому она продолжает посылать сигналы бедствия, и хаос продолжается. Даже по этому лирико-поверхностному описанию происходящего понятно, что такая клетка нежизнеспособна. И что есть гены, которые должны считываться и транслироваться непосредственно в митохондрии, чтобы регулировать происходящие именно в ней процессы, а не полагаться на запущенный партией ядром план производства гвоздей.. то есть протеинов дыхательной цепи для всех митохондрий сразу.

    Mitochondrial_DNA_ru.svg

    Проверив, что именно производится по оставшимся в митохондриях разных (а значит, и перемещавших м-гены в ядро независимо друг от друга) организмов, обнаружили, что это именно элементы для построения дыхательных цепей и АТФазы, а так же рибосом (то есть главной части аппарата трансляции).

    Подробнее об этом (и не только) можно прочитать у Лейна в «Энергия, секс, самоубийство: митохондрия и смысл жизни». Ну и можно просто сравнить схему митохондриальной ДНК, где расшифрованы кодируемые продукты (справа от этого абзаца), со схемой дыхательной цепи (вверху), чтобы стало понятно, что именно производится в митохондрии. Конечно же, не каждый протеин, встраиваемый в эту цепь, производится на месте, часть из них строится в цитоплазме клетки. Но основные «якоря», на которые цепляются остальные детали, создаются внутри митохондрии. Что позволяет производить ровно столько ферментов, сколько нужно, и именно там, где они необходимы.

    Как митохондрии связаны с сексом и как уживаются разные геномы в одной клетке, напишу в одной из следующих глав этой линии.